

E-ISSN: 2618-0618 P-ISSN: 2618-060X © Agronomy

www.agronomyjournals.com

2024; 7(6): 704-706 Received: 07-03-2024 Accepted: 12-04-2024

### Yash Gupta

Department of Agriculture, Maharishi Markandeshwar, Deemed to be University, Mullana, Ambala, Haryana, India

#### Ishwar Singh

Department of Agriculture, Maharishi Markandeshwar, Deemed to be University, Mullana, Ambala, Haryana, India

#### RK Behl

Department of Agriculture, Maharishi Markandeshwar, Deemed to be University, Mullana, Ambala, Haryana, India

## Rakesh Kumar

Department of Agriculture, Maharishi Markandeshwar, Deemed to be University, Mullana, Ambala, Haryana, India

### Vishavjeet Singh

Department of Agriculture, Maharishi Markandeshwar, Deemed to be University, Mullana, Ambala, Haryana, India

#### Corresponding Author: Yash Gupta

Department of Agriculture, Maharishi Markandeshwar, Deemed to be University, Mullana, Ambala, Haryana, India

# Effect of macro and micro nutrients application on yield attributes and yield in wheat (*Triticum aestivum* L.) under late sown conditions

Yash Gupta, Ishwar Singh, RK Behl, Rakesh Kumar and Vishavjeet Singh

**DOI:** https://doi.org/10.33545/2618060X.2024.v7.i6j.951

#### **Abstract**

A field experiment was conducted during winter (*Rabi*) season of 2022-2033 to study "Effect of macro and micro nutrients application on yield attributes and yield in wheat (*Triticum aestivum* L.) under late sown conditions". The experiment was laid out in Randomized Block Design (RBD), three replications of a single variety and ten nutrient treatments. The ten nutrient treatment were T<sub>1</sub>: 50% RDF +20 kg/ha MgSO<sub>4</sub>, T<sub>2</sub>: 50% RDF +20 kg/ha FeSO<sub>4</sub>, T<sub>3</sub>: 50% RDF +20 kg/ha ZnSO<sub>4</sub>, T<sub>4</sub>: 75% RDF +15 kg/ha MgSO<sub>4</sub>, T<sub>5</sub>: 75% RDF +15 kg/ha FeSO<sub>4</sub>, T<sub>6</sub>: 75% RDF +15 kg/ha ZnSO<sub>4</sub>, T<sub>7</sub>: 100% RDF 150:60:60 kg/ha N:P<sub>2</sub>O<sub>5</sub>:K<sub>2</sub>O<sub>5</sub>, T<sub>8</sub>: 100% RDF + 10 kg/ha MgSO<sub>4</sub>, T<sub>9</sub>: 100% RDF + 10 kg/ha FeSO<sub>4</sub>, T<sub>10</sub>: 100% RDF + 10 kg/ha ZnSO<sub>4</sub>. The findings showed that the biological yield, grain yield, straw yield, (111.99, 49.48, and 62.51 q/ha) were reported highest in 100% recommended dose of fertilizers + 10 kg/ha ZnSO<sub>4</sub> respectively. The highest gross, net returns was obtained in T<sub>10</sub> followed by T<sub>9</sub>, while minimum gross return and net return was obtained in T<sub>1</sub>. Highest value of B: C ratio (1.46) was obtained in T<sub>10</sub>.

Keywords: Wheat, grain yield, nutrients, zinc, nitrogen, iron

## Introduction

One of the major food crops that farmed worldwide is wheat (*Triticum aestivum* L.). Wheat crop is cultivated over the world for its nutritious and valuable grain. It is the most significant crop in terms of agronomy and nutrition, necessary for increased livelihoods, food security, and the reduction of poverty. After rice, wheat is the second most produced cereal for human consumption. Wheat dominates agronomic crops in terms of production and acreage, and it plays a key role in agricultural policies and farming. The global acreage under wheat crop accounts for 220.60 million hectares, with production of 788.5 million metric tonnes (Anonymous, 2023). India is the second-largest wheat grower in the world, behind China. India leads the world in wheat acreage. In India, estimated area under wheat crop was 304.69 lakh hectares in 2021–2022, with an expected 106.84 million tonnes of wheat produced during that time (Anonymous, 2022-23). In Haryana, total production of wheat was reported at (10.45 million tonnes) in 2021-2022 (Anonymous, 2021-2022).

Its low productivity is primarily caused by inadequate crop establishment, mis-timed irrigation, and inadequate fertilizer supplies. In wheat, the technique of crop establishment and the availability of fertilizer have an impact on the yield, economics and efficiency of nutrient utilization. Micronutrients are needed for the growth and development of plants and have a significant position in crop yields due to their essentiality. In actuality, their significance is increased by their crucial role in improving soil production and providing nutrition for plants. Keeping these facts in views, the present investigation was designed to determine "Effect of macro and micro nutrients application on yield attributes and yield in wheat (*Triticum aestivum* L.) under late sown conditions". This paper deals with the response of wheat variety PUSA Gautami (HD3086) to different macro and micro nutrients.

## **Materials and Methods**

A field experiment was carried out to determine "Effect of macro and micro nutrients

application on yield attributes and yield in wheat (Triticum aestivum L.) under late sown conditions" in 2022-23 winter (Rabi season) at the research farm of the Department of Agriculture at Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana. In order to set up the experiment, randomised block design was used with ten nutrient treatments e.g. T<sub>1</sub>: 50% RDF +20 kg/ha MgSO<sub>4</sub>, T<sub>2</sub>: 50% RDF +20 kg/ha FeSO<sub>4</sub>, T<sub>3</sub>: 50% RDF +20 kg/ha ZnSO<sub>4</sub>, T<sub>4</sub>: 75% RDF +15 kg/ha MgSO<sub>4</sub>, T<sub>5</sub>: 75% RDF +15 kg/ha FeSO<sub>4</sub>, T<sub>6</sub>: 75% RDF +15 kg/ha ZnSO<sub>4</sub>, T<sub>7</sub>: 100% RDF 150:60:60 kg/ha N:P<sub>2</sub>O<sub>5</sub>:K<sub>2</sub>O, T<sub>8</sub>: 100% RDF + 10 kg/ha MgSO<sub>4</sub>, T<sub>9</sub>: 100% RDF + 10 kg/ha FeSO<sub>4</sub>, T<sub>10</sub>: 100% RDF + 10 kg/ha ZnSO<sub>4</sub>.In this research the variety of Wheat PUSA Gautami (HD 3086) was taken. The sowing was carried out using a tractor-drawn seed drill at a row-to-row spacing of 22.5 cm and plant to plant spacing 5 cm. The seeds were planted 4-5 cm deep. Observation were recorded on plant height at 30, 60, 90 DAS and at harvest,

yield and yield attributes, and economic studies. The data was analyzed using ANOVA (Analysis of Variance) table.

## Results and Discussion Growth Attributes

Plant height data (Table 1) showed that the treatment  $T_{10}$  (100% RDF+10 kg/ha ZnSO<sub>4</sub>) recorded the highest plant height at 30, 60, 90 DAS and at harvest stage (20.3, 53.6, 94, and 96.6 cm, respectively) which was statistically significant with  $T_9$  (100% RDF+10 kg/ha FeSO<sub>4</sub>) 19.9, 52.2 92.7 and 95.2 cm, respectively. The minimum plant height noted at 30, 60, and 90 DAS, as well as at harvest stage, were 17.7, 42.3, 81.1, and 83.4 cm, respectively, sin treatment  $T_1$  (50% RDF + 20 kg/ha MgSO<sub>4</sub>). Similar results of plant height at 30, 60, 90 DAS and at harvest stage were recorded by Prajapati *et al.* (2022) [6] in his research work.

**Table 1:** Effect of macro and micro nutrients application on plant height (cm) at 30, 60, 90 DAS and at harvest stage in wheat under late sown conditions

| Crombal         | Tucotments                                                                  |      | Plant height (cm) |         |            |  |
|-----------------|-----------------------------------------------------------------------------|------|-------------------|---------|------------|--|
| Symbol          | Treatments                                                                  |      | 60 Days           | 90 Days | At Harvest |  |
| T <sub>1</sub>  | 50% RDF +20 kg/ha MgSO <sub>4</sub>                                         | 17.7 | 42.3              | 81.1    | 83.4       |  |
| T <sub>2</sub>  | 50% RDF +20 kg/ha FeSO4                                                     | 17.7 | 43.2              | 82.6    | 84.6       |  |
| T <sub>3</sub>  | 50% RDF +20 kg/ha ZnSO <sub>4</sub>                                         | 17.9 | 43.9              | 83.4    | 85.6       |  |
| T <sub>4</sub>  | 75% RDF +15 kg/ha MgSO <sub>4</sub>                                         | 18.1 | 46.8              | 86.7    | 88.4       |  |
| T <sub>5</sub>  | 75% RDF +15 kg/ha FeSO4                                                     | 18.3 | 47.5              | 87.4    | 89.6       |  |
| T <sub>6</sub>  | 75% RDF +15 kg/ha ZnSO <sub>4</sub>                                         | 18.8 | 48.6              | 88.9    | 91.3       |  |
| T <sub>7</sub>  | 100% RDF 150:60:60 kg/ha N: P <sub>2</sub> O <sub>5</sub> :K <sub>2</sub> O | 19.1 | 50.0              | 90.4    | 92.4       |  |
| T <sub>8</sub>  | 100% RDF + 10 kg/ha MgSO <sub>4</sub>                                       | 19.3 | 50.9              | 91.8    | 94.4       |  |
| T9              | 100% RDF + 10 kg/ha FeSO4                                                   | 19.9 | 52.2              | 92.7    | 95.2       |  |
| T <sub>10</sub> | 100% RDF + 10 kg/ha ZnSO <sub>4</sub>                                       | 20.3 | 53.6              | 94.0    | 96.6       |  |
| Footows         | CD (P=0.05)                                                                 | 0.3  | 0.6               | 0.8     | 0.6        |  |
| Factors         | SE(m) ±                                                                     | 0.1  | 0.2               | 0.3     | 0.2        |  |

## Yield and yield attributes

Among the various treatments, (Table 2) the treatment  $T_{10}$  (100% RDF+10 kg/ha ZnSO<sub>4</sub>) was recorded highest length of spike (9.30 cm) which was statistically significant with treatment  $T_8$  (100% RDF+10 kg/ha MgSO<sub>4</sub>) (9.00 cm).

Data presented in Table 2 showed that the treatment  $T_{10}$  (100% RDF+10 kg/ha ZnSO<sub>4</sub>) recorded the highest number of grains per spike and number of effective spike per m<sup>2</sup> (47 and 266.34, respectively) which was statistically significant with  $T_9$  (100% RDF+10 kg/ha FeSO<sub>4</sub>) 46 and 260.34, respectively. The

minimum number of grains per spike and number of effective spike per  $m^2$  42.67 and 218.34 respectively, were recorded in treatment  $T_1$  (50% RDF + 20 kg/ha MgSO<sub>4</sub>).

Among the various treatments, (Table 2) the treatment  $T_{10}$  (100% RDF+10 kg/ha ZnSO<sub>4</sub>) was recorded highest test weight (39.63 g) which was statistically significant with treatment  $T_8$  (100% RDF+10 kg/ha MgSO<sub>4</sub>) (39.17 g). Similar results of yield attributes were recorded by Arshad *et al.* (2016) [4] during his research work.

Table 2: Effect of macro and micro nutrients application on yield attributes in wheat under late sown conditions

| Symbol          | Treatments                                           | Length Of Spike(cm) | No. of grains/spike | No. of Effective Spike/m <sup>2</sup> | Test Weight (g) |
|-----------------|------------------------------------------------------|---------------------|---------------------|---------------------------------------|-----------------|
| $T_1$           | 50% RDF +20 kg/ha MgSO <sub>4</sub>                  | 8.30                | 42.67               | 218.34                                | 36.96           |
| $T_2$           | 50% RDF +20 kg/ha FeSO <sub>4</sub>                  | 8.40                | 43.00               | 223.00                                | 37.28           |
| $T_3$           | 50% RDF +20 kg/ha ZnSO <sub>4</sub>                  | 8.40                | 43.34               | 227.34                                | 37.62           |
| $T_4$           | 75% RDF +15 kg/ha MgSO <sub>4</sub>                  | 8.60                | 45.00               | 232.00                                | 38.14           |
| $T_5$           | 75% RDF +15 kg/ha FeSO <sub>4</sub>                  | 8.60                | 45.00               | 237.34                                | 38.45           |
| $T_6$           | 75% RDF +15 kg/ha ZnSO <sub>4</sub>                  | 8.70                | 45.67               | 242.67                                | 38.78           |
| T <sub>7</sub>  | 100% RDF 150:60:60 kg/ha N:<br>P2O5:K <sub>2</sub> O | 8.90                | 46.00               | 248.34                                | 38.98           |
| $T_8$           | 100% RDF + 10 kg/ha MgSO <sub>4</sub>                | 9.00                | 46.67               | 253.34                                | 39.17           |
| T <sub>9</sub>  | 100% RDF + 10 kg/ha FeSO <sub>4</sub>                | 9.20                | 46.00               | 260.34                                | 39.49           |
| T <sub>10</sub> | 100% RDF + 10 kg/ha ZnSO <sub>4</sub>                | 9.30                | 47.00               | 266.34                                | 39.63           |
| Factors         | C.D. 5%                                              | 0.30                | 0.87                | 4.85                                  | 0.28            |
|                 | SE(m) ±                                              | 0.10                | 0.29                | 1.62                                  | 0.09            |

Among the various treatments (Table 3) the data presented in treatment T<sub>10</sub> (100% RDF+10 kg/ha ZnSO<sub>4</sub>) registered highest grain and biological yield (49.48 and 111.99 q/ha, respectively)

which were statically significantly with T<sub>9</sub> (100% RDF+10 kg/ha FeSO<sub>4</sub>) 47.92 and 109.06 q/ha, respectively. The lowest grain and biological yield were registered with T<sub>1</sub> (50% RDF+

20 kg/ha MgSO<sub>4</sub>) 34.37 and 82.04 q/ha, respectively. As per data presented in Table 3, treatment  $T_{10}$  (100% RDF+10 kg/ha ZnSO<sub>4</sub>) registered highest straw yield (62.51 q/ha) which was statistically significant with treatment  $T_8$  (100% RDF+10 kg/ha MgSO<sub>4</sub>) (59.57 q/ha). The lowest straw yield was recorded with treatment  $T_1$  50% RDF +20 kg/ha MgSO<sub>4</sub> (47.67 q/ha).

Data presented in Table 3 showed that, the treatment  $T_{10}$  (100% RDF+10 kg/ha ZnSO<sub>4</sub>) registered highest harvest index (44.18%) which was statistically significant with treatment  $T_5$  (75% RDF+15 kg/ha FeSO<sub>4</sub>) (43.14%). Similar results of straw yield, harvest index, grain yield and 1000-grain weight were recorded by Prajapati *et al.* (2022) <sup>[6]</sup> in his research work.

Table 3: Effect of macro and micro nutrients application on yield in wheat under late sown conditions

| Symbol         | Treatments                                        | Yield (q/ha) |             |                  | Harris et Inden (0/) |  |
|----------------|---------------------------------------------------|--------------|-------------|------------------|----------------------|--|
|                |                                                   | Grain Yield  | Straw Yield | Biological Yield | Harvest Index (%)    |  |
| $T_1$          | 50% RDF +20 kg/ha MgSO <sub>4</sub>               | 34.37        | 47.67       | 82.04            | 41.89                |  |
| $T_2$          | 50% RDF +20 kg/ha FeSO <sub>4</sub>               | 36.24        | 49.41       | 85.65            | 42.31                |  |
| T <sub>3</sub> | 50% RDF +20 kg/ha ZnSO <sub>4</sub>               | 37.63        | 50.64       | 88.27            | 42.63                |  |
| $T_4$          | 75% RDF +15 kg/ha MgSO <sub>4</sub>               | 40.24        | 53.79       | 94.03            | 42.8                 |  |
| T <sub>5</sub> | 75% RDF +15 kg/ha FeSO <sub>4</sub>               | 41.87        | 55.18       | 97.05            | 43.14                |  |
| $T_6$          | 75% RDF +15 kg/ha ZnSO <sub>4</sub>               | 43.29        | 56.69       | 99.98            | 43.31                |  |
| T <sub>7</sub> | 100% RDF 150:60:60 kg/ha N: P2O5:K <sub>2</sub> O | 44.92        | 58.02       | 102.94           | 43.64                |  |
| $T_8$          | 100% RDF + 10 kg/ha MgSO <sub>4</sub>             | 46.45        | 59.57       | 106.02           | 43.81                |  |
| T <sub>9</sub> | 100% RDF + 10 kg/ha FeSO <sub>4</sub>             | 47.92        | 61.14       | 109.06           | 43.95                |  |
| $T_{10}$       | 100% RDF + 10 kg/ha ZnSO <sub>4</sub>             | 49.48        | 62.51       | 111.99           | 44.18                |  |
| Factors        | C.D. 5%                                           | 1.38         | 2.03        | 2.86             | 0.9                  |  |
|                | SE(m) ±                                           | 0.46         | 0.67        | 0.95             | 0.3                  |  |

#### **Economics**

Data referring (Table 4) to economics was affected by various dose of fertilizers. The maximum cost of cultivation was recorded in the treatment  $T_8$  (100% RDF+10 kg/ha MgSO<sub>4</sub>) (60583 Rs./ha) and the least cost of cultivation was recorded in  $T_7$  (100% RDF 150:60:60 kg/ha N:P<sub>2</sub>O<sub>5</sub>:K<sub>2</sub>O) (57215 Rs./ha). The highest gross, net returns and B:C were observed in the

treatment  $T_{10}$  (100% RDF+10 kg/ha ZnSO<sub>4</sub>) (148902, 45842 Rs./ha and 1.46, respectively) and minimum gross, net returns and B:C were recorded in treatment  $T_1$  (50% RDF+ 20 kg/ha MgSO<sub>4</sub>) (106405 Rs./ha) 106405, 45842 Rs./ha and 0.76, respectively. Present findings related to economics were in conformity with Mishra *et al.* (2017) <sup>[5]</sup>.

Table 4: Effect of macro and micro nutrients application on economics in wheat under late sown conditions

| Symbols         | Treatments                                                                  | Economics                    |                        |                      |      |  |  |
|-----------------|-----------------------------------------------------------------------------|------------------------------|------------------------|----------------------|------|--|--|
|                 |                                                                             | Cost of Cultivation (Rs./ha) | Gross Returns (Rs./ha) | Net Returns (Rs./ha) | B:C  |  |  |
| $T_1$           | 50% RDF +20 kg/ha MgSO <sub>4</sub>                                         | 60563                        | 106405                 | 45842                | 0.76 |  |  |
| $T_2$           | 50% RDF +20 kg/ha FeSO4                                                     | 59617                        | 111597                 | 51980                | 0.87 |  |  |
| T3              | 50% RDF +20 kg/ha ZnSO <sub>4</sub>                                         | 60493                        | 115411                 | 54918                | 0.91 |  |  |
| T <sub>4</sub>  | 75% RDF +15 kg/ha MgSO <sub>4</sub>                                         | 60573                        | 123163                 | 62590                | 1.03 |  |  |
| T <sub>5</sub>  | 75% RDF +15 kg/ha FeSO4                                                     | 59862                        | 127599                 | 67737                | 1.13 |  |  |
| $T_6$           | 75% RDF +15 kg/ha ZnSO <sub>4</sub>                                         | 60521                        | 131674                 | 71153                | 1.18 |  |  |
| <b>T</b> 7      | 100% RDF 150:60:60 kg/ha N: P <sub>2</sub> O <sub>5</sub> :K <sub>2</sub> O | 57215                        | 136069                 | 78854                | 1.38 |  |  |
| $T_8$           | 100% RDF + 10 kg/ha MgSO <sub>4</sub>                                       | 60583                        | 140105                 | 79522                | 1.31 |  |  |
| <b>T</b> 9      | 100% RDF + 10 kg/ha FeSO4                                                   | 60110                        | 144628                 | 84518                | 1.41 |  |  |
| T <sub>10</sub> | 100% RDF + 10 kg/ha ZnSO <sub>4</sub>                                       | 60549                        | 148902                 | 88353                | 1.46 |  |  |

## Conclusion

From the research it was found that, application of combine dose of fertilizers e.g. 100% RDF+ 10 kg/ha ZnSO<sub>4</sub> was the most suitable dose of fertilizer to be adopted because, it gave highest performance in terms of growth parameters, yield and yield attributes and economic returns.

# References

- 1. Anonymous. Government of India (GoI). Annual Report 2022-23 Department of Agriculture and Farmers Welfare, Ministry of Agriculture and Farmers Welfare; 2022-23.
- 2. Anonymous. USDA Circular on World Agricultural Production. Foreign Agricultural Service Circular Series WAP 6-23 June 2023; c2023
- 3. Anonymous. Agriculture statistics at a glance; c2021-22.
- 4. Arshad M, Adnan M, Ahmed S, Khan AK, Ali I, Ali M, Khan MA. Integrated effect of phosphorus and zinc on wheat crop. Am Eurasian J Agric Environ Sci. 2016;16(3):455-459.

- 5. Mishra S, Ali A, Singh AK, Singh G, Singh RR. Response of late sown Wheat to phosphorus and zinc nutrition in eastern Uttar Pradesh. Ann Plant Soil Res. 2017;19(1):23-28.
- 6. Prajapati A, Patel K, Chauhan Z, Patel C, Chaudhari P. Effect of Zinc Fertilization on growth, yield and quality of wheat (*Triticum aestivum* L.). Pharma Innov J. 2022;11(4):1399-1402.